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Abstract

This paper exarnines a non-general relativistic cosmological model based on a simple mathematical

modification of Minkowski space-time. The model predicts the existence of two mathematically

distinct classes of cosmological objects:

o a class of relatively close objects with apparent magnitudes, elc., similar lo those of standard
mwodels, but with redshifts imited by 3; :

» aclass of more distant, smaller, brighter objects with unlimited redshifts.

The model also predicts that the age of the universe is twice the Hubble time, or approximately 25

billion years. Unlike general relativistic cosmologies, this cosmology is independent of the

distribution of matter in the universe. Its effects become significant only at cosmological distances.

Key words: age of the universe, angular diameters, apparent magnitudes, cosmologi-

cal models, matter, number counts, redshifts, relative infinity

1. INTRODUCTION

The standard paradigm for general relativity may be
summarized as follows. The invariance of light speed leads
to the amalgamation of the seemingly disparate quantities
~space” and “time” into a single physical entity “space-
time.” Its simplest incarnation, Minkowski space-time,
explains some phenomena but not others, e.g., the bending
of light around massive objects. Minkowski space-time is
then modified by assuming that the presence of matter
“curves” it; the problem for physics is then to match
geometric curvature with an appropriate distribution of
matter.

Small-scale physical effects such as the bending of light fit
this picture comfortably. Cosmologically, the fit is less
certain: although the standard Friedmann-Lemaitre-
Robertson-Walker models appear to describe the expansion
of the universe adequately, there is increasing uneasiness
about their fit to the observed matter in the universe (the
“missing mass,” etc.).

The details of this controversy are too complex and diverse
to discuss here. Our purpose is simply to point out the
existence of another elementary but relatively unknown
mathematical modification of Minkowski space-time which
does not invoke the presence of matter, but does produce
some surprisingly realistic conclusions about cosmological
redshifts. We would like to raise the possibility that this
modification, rather than the mass distribution of the
universe, may be responsible for some astronomical observa-
tions.

The modification? Allow the location of Minkowskian
infinity to be relative, i.e., observer-dependent. Now, points
at infinity, though somewhat uncommon in physics, abound
in classical geometry. To clarify the notion of a relative

infinity and its effects on geometric perceptions, and to
introduce some of the mathematics used later, we look first
at a simple spatial example.

2. RELATIVEINFINITY IN THE EUCLIDEAN PLANE:!
THE MOBIUS PLANE

Most readers who have ever encountered a first course in
complex variables will have come across the “one-point
completion” of the dassical Eudidean plane by a point at
infinity, i.e., the Mdbius plane. Although it is usually
discussed in terms of complex numbers, for our purposes,
the Mobius plane is more suitably described via the more
«old-fashioned” fetracyclic coordinates?

Given a rectangular coordinate system r = (x, y) on the
Budidean plane with the associated dot product rr = X+,
the corresponding tetracydlic coordinates are defined as
follows: for any H = 0,

X:=Hx, Y:=Hy, N:=H(-1),
ie.

R:=(X,Y.H.N):=H(xylrr)' e R.
(Superscripted t’s denote transposes. ) These coordinates are

homogeneous (i.e., proportional quadruples represent the
same point) and satisfy the condition

[R,R]:= X2+Y*-HN =0,

where [, ) is the scalar product given by
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(R,.R,)::=XX, +Y1Y2“2'H|N2 ‘3”2"1

forall R;:= (X, Y, H, N;) € R% i = 1,2. The condition H # 0
may then be written as [R, E] *# 0 for E := (0, 0, 0, 1)".

It is easy to show that both lines and drcles have
tetracyclic equations of the form [R, A] = 0 for some A € R*
with [A, A] > 0; more precisely, we have a line whenever
R = E satisfies this equation. The Eudidean transformations
(rotations, reflections, translations, dilatations) have the
form R -~ TR, where T is a nonsingular 4 X 4 matrix with
eigenvector E that preserves the scalar product [, ], i.e.,
TE « E and [TR, TR] = [R, R] for all R € R*.?

Now extend the Eudidean plane to the M&bius plane by
admitting as points those quadruples R = (X, Y, H, N)' with
H = 0. Since r = (X/H, Y/H)' becomes infinite as H ~ 0, we
say that these points are “at infinity.” They must still satisfy
[RRI=X +Y -0N=0,ie,X =Y = 0, so there
is actually just a single point at infinity: the antipode
E « (0, 0, 0, 1)". Lines may now be thought of as “circles
through the point at infinity.” The coordinate transforma-
tions of our extended plane need no longer have eigenvector
E; thus, although they still map lines and circles onto lines
or drdes, they need not preserve the distinction between the
two (since they need not preserve the antipode).

The idea of a relative infinity comes not from the mathe-
matics of the Mébius plane, but rather from a question of
interpretation: just what does it mean for a point to be “at
infinity*? To make the possible interpretations concrete, we
borrow an idea from relativity theory: with each coordinate
system, we associate an observer who interprets the geome-
try of the plane in terms of his or her own coordinate system.
We then ask how these observers interpret the antipode.

One interpretation assigns the antipode a spedal, unique
status, preserved by all “allowable” coordinate transforma-
tions (i.e., those with eigenvector E). All observers live in the
same ordinary Euclidean plane, and see the antipode as an
artifact—useful, perhaps, but not really “there.” All agree on
the distinction between lines and circles—the lines pass
through their common antipode. (See Fig. 1. This is the
fixed, “unreal” type of infinity found in Penrose diagrams.)

The opposite interpretation denies the antipode any special
status whatsoever. All observers live in a complete Mébius
plane, with no point in any way distinguishable from the
others. Again, the observers agree completely: there are no
lines, as distinct from circles. (See Fig. 2. This interpretation
of infinity is often found in classical geometry texts.)

The “relativistic” viewpoint lies between these extremes:
the antipode retains its special status, but only for individual
observers. With respect to his own spedal antipode, any
observer sees an ordinary Buclidean plane, and unambigu-
ously distinguishes lines from circles: the lines are the ones
that pass through his antipode. Another observer will
generally disagree: although she sees the same objects
(BEuclidean lines and circles), to her, the lines are the ones
through her antipode (Fig. 3).
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Figure 1. If two observers have the same “special” antipode,
then they agree on the distinction between lines and circles.
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Figure 2. If the observers have no distinguished antipode,
they all again agree: “lines” do not now exist.

In this case, then, although the two observers share the
same universe of points (with two exceptions) and agree
that these points constitute a Buclidean plane, they disagree
radically about the geometry of that plane. Like simultaneity
in special relativity, the location of infinity and the conse-
quent distinction between lines and circles become relative,
observer-dependent concepts.

3. RELATIVEINFINITY INMINKOWSKI SPACE-TIME

The space-time model of this paper bears exactly the same
relation to ordinary Minkowski space-time as the Mdbius
plane (with a relative infinity) does to the Buclidean plane.
Cast Minkowski space-time as R* with a Lorentzian scalar
product (i.e., as a linear geometrical space rather than a
differentiable manifold) and define cydlic coordinates by
direct analogy to tetracydlic coordinates:* given a rectangular
coordinate system r := (x, y, z, {)' in Minkowski space-time
with the corresponding scalar product
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Figure 3. Two observers with different antipodes will disagree
on the distinction between lines and dircles.

Err:=xt+y*+22 -2
for any H ¥ 0, define
X:=Hx, Y:=Hy, Z:=Hz, T:=Ht, N:=H(x,1),
ie.
R:= H(x,y.2,tL(r.1))".

These coordinates are homogeneous and satisfy [R, R] = 0,
where [, ] is now the scalar product given by

(R R, = XX, + 1Y, + 2,2, -TiT, ‘%HxNz ——12—H2N|

forall R, := (X,, Y, Z,, T}, H,, N|)' and R, := (X,, ¥, Z,, T,
H,N,)'inR%.

Now add the events at infinity: admit as events
those sextuples R =(X, Y, Z, T, H, N)' with H = 0. Then
X2 + Y+ 22 -T° - ON = 0, so in addition to the antipode
E = (0,0,0,0,0, 1), we must add other events at infinity:
those with [R, E} = -H/2 = 0. Since for any finite point A,
the equation [R, A] = O represents the null cone with vertex
A (easy exercise), the added points are said to constitute the
“null cone at infinity.” This of course is the standard
Minkowskian infinity, except that here, the infinite null cone
is not the fixed mathematical artifact of Penrose diagrams,
etc., but is equivalent to all other null cones and is inter-
changeable with them by coordinate transformations (here,
multiplications of R by nonsingular 6 X 6 matrices that

preserve the scalar product [, ]). The location of infinity is
now relative.

To examine the physical effects of a relative Minkowskian
infinity, we again attach observers to coordinate systems.
Each observer is oblivious to his or her own infinity—the
observer’s space-time consists of the remaining events, and
is Minkowskian, at least to the extent that space is Eudlidean
and light travels in straight lines with speed 1. (The observer
does not assume another’s proper time to be Minkowskian
arclength.) His world-line (his time axis) is a time-like
line—as the observer sees it. But just as a relative Buclidean
infinity induces some observers to see cirdes where others
see lines, a relative Minkowskian infinity induces some
observers to see other observers’ world-lines as timelike
hyperbolas. (See Fig. 4. These are not the world-lines of
observers with constant proper acceleration, since proper
time is not arclength. These observers have zero proper
acceleration.) We omit the proof; see the next section for a
concrete example.

Independent of the location of infinity, then, there is no
distinction between time-like lines and time-like hyperbolas:
we are forced to treat them identically. The consequences are
radical, especially for our usual notion of proper time.

4. RELATIVE INFINITY AND PROPER TIME: SYN-
CHRONIZING CLOCKS

For an observer using his or her own coordinates, defining
proper time is no problem: proper time ris the time coordi-
nate he assigns to the events on his own world-line (his time
axis). The observer can then use proper time to parameterize
the world-line: in his own rectangular coordinates, r( 7) = (0,
0,0, r)', or in cyclic coordinates, R(t) « (0,0, 0, 7, 1,- t’)‘.
(Note that since R(7) = (0,0,0, -7, -2 1), R(r) ~EBas r
-+, i.e., an observer’s world-line contains his or her own
antipode as a limiting point.) In his own coordinates, then,
an observer’s proper time is Minkowskian arclength.

But Minkowskian arclength is not invariant under general
cyclic coordinate transformations. In another observer’s
coordinates, the first observer’s proper time is not arclength,
but a somewhat more complicated quantity.’ Only if the
two observers are “co-inertial” (i.e., if they share the same
antipode) is one observer’s proper time the other observer’s
arclength (up to scale).

The situation becomes more worrisome if we consider
two observers with the same world-line. In ordinary
(nonextended ) Minkowski space-time, the clock readings of
two such observers can differ only up to arbitrary choices of
clock origin and unit of measurement, i.e., their clocks run
uniformly with respect to each other. But if infinity is
relative, this no longer holds: the observers may now have
different antipodes. In this case, near his own antipode, the
first observer’s clock reading becomes infinite while the
second observer’s reading remains finite, and vice versa:
their clocks cannot run uniformly with respect to each other.
(Their proper times are in fact related by a linear fractional
transformation.’)

This, of course, is heresy. Physically, the unit of time, the
second, is defined™ to be “9,192,631,770 periods of the
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Figure 4. In Minkowski space-time with a relative infinity,
one observer’s world-line may appear to another observer to
be a timelike hyperbola (the asymptotes are null lines).

(x,y.2)

N\
/

imperturbed microwave transition between the two hyper-
fine levels of the ground state of Cs'*?,” and it has been well
verified experimentally that other local “atomic docks” are
synchronized to run uniformly with respect to cesium docks.
We appear to have no physical justification for a more
general proper time parameter.

But does this agreement among docks hold universally? It
is not clear that a comparison of the rates of physical clocks
at cosmological distances is even meaningful. And it is just
as easy to believe that atomic docks here and now agree, not
from any intrinsic invariance of proper time, but because,
somewhere in the distant past, they were synchronized to
agree.

Suppose this is the case; more predsely, suppose that all
occupied world-lines contain a common event such that, at this
event, the docks of any two observers are synchronized to

e read 0O;

* have rates related by a Minkowskian time dilation
(Doppler shift);

« run uniformly with respect to each other.

(Unoccupied world-lines do not present difficulties: a
physically defined proper time requires physically present
clocks.)

To develop the mathematical implications of these condi-
tions, we first identify two of the observers with ourselves
and some distant cosmological object. Our cyclic coordinates
Rand its cyclic coordinates R are related by some coordinate
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transformation matrix T, i.e. R = TR. The common event
must have coordinates B =« (0, 0, 0, 0, 1, 0)" in both systems
(it is on both world-lines at time 0), so the first synchroniza-
tion condition implies that B is an eigenvector of T.

Next, suppose that the object has proper time r. The
second synchronization condition then implies that, in our
rectangular coordinates r =(5,) := (x,y, x, t), its world-line
satisfies

dt 1
EL,:o N/

for

v
) dt t—r:O.

The third synchronization condition translates directly into

From these three mathematical conditions, a straightfor-
ward calculation (in the appendix) gives us the object’s
world-line: up to a Lorentz transformation and a re-orienta-
tion of our spatial axes, in our coordinates, the object has
world-line

dr? R o
)= A)=dd)=0 )=

for

sl d%s
T 2|dr?

Eliminate rto get the hyperbola

2 2
12 -(x+lr‘) = -(15")
2 2

illustrated in Fig. S.
Note first that, since its world-line has two branches,
the object appears to be two objects: a “nearby” object

u=r=0
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object's
worldline

Figure 5. The object’s world-line is a hyperbola tangent to
our {-axis at event B. Its infinity is a null cone with vertex at
its antipode (- 4!, 0).

(for || < &) and a “far-away” object (for |} > d'!). This
“splitting” has no physical meaning for the object; it results
merely from describing its world-line in our coordinates. The
situation is completely symmetric: to the object, our world-
line appears split.

Light from the object can thus reach us from two diametri-
cally opposite directions—with one catch: we do not always
see it. Light from the near-branch event U (Fig. 5) reaches us
without complications. But light from event W does not: it
reaches the object’s infinity before it can reach us, and its
intensity, which varies by an inverse square law in the
object’s coordinates, drops off to zero. For the same reason,

we cannot observe light from the lower half of the far-branch
part of the world-line.

5. REDSHIFTS, MAGNITUDES, ANGULAR DIAME-
TERS, AND NUMBER COUNTS

Suppose the object emits light at its proper time r = ¢,

which we receive at our proper time v > 0 (our “now”). Then

v= i(e) +|x(e)| =

£
1¥4¢
(the top and bottom signs denote the near and far branches

respectively) and the redshift z of the light is given by

_dv 1

de  (1%5¢)*

Tk

Light from the “borderline” near-branch event V (Fig. 5)
arrives at our time v = 4!, so from *, £ =4 !/2, and from **,

= 3, All observable near-branch light thus has redshift less
than 3. The observable far-branch light can have infinite
redshift (as £ ~ - J ') or may be blueshifted (if - < ¢ <
-24"). Note (from Fig. 5) that we cannot observe light from
both branches simultaneously.

The apparent magnitude of the incoming light is defined‘?
by

m:=25log[(1+2)* A(d)] + constant,

where d is the distance traveled by the light in the emitting
object's coordinates and A(d ) is the surface area of a sphere of
radius 4. (The constant depends on the type of object.)
Since space here is Buclidean, A(d ) = 4xd 2, so

m =5Slog{(1+ z)Z] +constant.
By symmetry, our world-line in the object’s coordinates is

— -d0?
o) =15,

Heo)=2s)=0.
(o) =

-
1-6%2
(where ois our proper time), so d = |¥ (v)| and

m =Slog[(l + Z)I f(v)|]+ constant.

For observable near-branch light, we have 0 < v < 8, so
X (v) < 0and

x(v) v
v 1-6%2
From **,
be = 1+z—l'
1+2

so from *, év = Jl+z . Then

= vt

"2Nvz-(1+2) (1+2)
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from which

(1+2)+V1+2

m = 5log| v~—"———|+constant.
near gl: 2-Ji+—z ]

Similarly, for observable far-branch light,

v(l+z)+ 142

me,. =Slo
far g[ 2+41+2

] +constant.

For positive redshifts and comparable objects, these
relations are graphed in Fig. 6. The near-branch magnitude
curve resembles the corresponding FLRW curves; the far-
branch curve shows relatively constant magnitudes.

The apparent angular diameter of a cosmological object with
diameter 4 is given® by 6 := A/, where d is the distance
traveled by the incoming light in our coordinates, i.e., d =
|x(&)|.

For observable near-branch light, x(¢) > 0 and

5€_J1+z—1
Jl+z

as before, so from *,

x(e)_ o J1+z-1

v 1+dc 2J1+z-1"

whence

2Jl+z-l
- Ayl
O e = AV r_l+z—1'

Similarly, for observable far-branch light,

o 2zt
Jitz+1°

ofar =

Near-branch apparent angular diameters resemble FLRW
. ones and decrease with increasing redshift; far-branch
objects have relatively constant angular diameters (Fig. 7;
the curves are for objects with the same diameter).

For comparable objects (with the same diameter and same
redshift 0 < z <3),
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Figure 6. The apparent magnitude relations for near-branch
and far-branch objects. The curves cross at z = 1, and the
near-branch curve is asymptotic to the line z = 3.

Opar _1+2z—J1+z
Onear 14224142

This ratio is always less than 1 and decreases as z de-
creases—it is 0.07 for z = 0.1, for example—so for low
redshifts, far-branch objects appear significantly smaller
than their near-branch counterparts, and more so for lower
redshifts.

Expand the near-branch magnitude and angular diameter
relations in power series:

Mpcar = Slog%+510gz+ F4

4In10
+(higher order terms in z)+constant

and

-1
Alv 5
Onear = ;(3) {1 +'ZZ

+(higher order terms in z)}.

The corresponding relations for FLRW models are!*)
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Figure 7. The angular diameter relations for near-branch
objects and far-branch objects with positive redshifts.

25
=5log(H,)} +51 —=q-
m og(Ho) ™ + °82+ln10( q0)2

+ (higher order terms in z)+ constant

and

A 1
0= ;Ho 1+ 5(% +3)2

+(higher order terms in Z)}.

where H, and ¢, are the Hubble constant and the decelera-
tion parameter. The formulas agree up to first order for H, =
(v/2)! and g, = - 1/2, so if we may assume that the experi-
mental value of H; (as calculated to fit the FLRW models) is
based on relatively nearby objects, we may conclude thatv =
2H,™', i.e., the age of the universe is twice the Hubble time.
To estimate the number of objects with a given redshift,
we look at number counts. Number counts come in several
versions; the simplest is N(< z), the number of cosmological
objects with redshift less than z. To calculate N(< z), we first
need to know how these objects are distributed in space.
Consider the near-branch objects (6 < v'!) located along
our positive x-axis. If none has a special place in the uni-
verse, then the distribution of objects should look the same
to each, so the coordinate transformations relating each
object to the next should all be the same. The transformation

relating us to the first object (appendix) has matrix

%)=

gooo--

0

O 0O 0 O — O

o O o -~ O O

o O~ O O O

o = O O O O
o

for some ¢, so the transformation relating us to the nth
object is{C(d,)}" = C(nd,). It follows that the number n of
near-branch objects along our positive x-axis with world-line
parameter é = nd, or less is proportional to 4. If we look in
all directions, this number is proportional to &. The relations
*and ** give & = v"(ﬁ??—l), )

N (<2) (142 -1).

From the near-branch apparent magnitude relation,

g0 o | SH2WE 2]’
2+ z-1 ’

SO

3
1
0.6,
Nncar(< Z)": 10 "'m"(2~ l+Z) .

For small z, this gives N, (< z) = 10%®™near a5 in stan-
dard models.

For far-branch objects (6 > v!), a similar discussion
applies (look along our negative x-axis). We now have 6 =
v''(W1+z+1), so the number of far-branch objects with
redshift less than z is proportional to & - (v')?, i.e.,

Ne (< 2)c(W1+z+1)> -1

This estimate includes all far-branch objects, with redshifts
from -1 to +. (The near-branch estimate is restricted to 0
<z<3)

The number N(= z) of objects af a given redshift z is the
derivative of N(< z). For comparison, the number counts
N(= z) for both near- and far-branch objects are graphed in
Fig. 8 (for z > 0). Note that at any redshift 0 < z < 3, there
are more far-branch objects than near-branch ones.
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6. CONCLUSION
How realistic is this model?

1. Asnoted, the apparent magnitudes, angular diameters,
and number counts of near-branch objects resemble
those of standard models, which, at least for low
redshifts, agree well with astronomical observation.

2. The model predicts that the age of the universe is twice
the Hubble time. In light of the recent controversy over
the ages of stars vs. the age of the universe,® this is
particularly significant: from the new estimate of
H, 80 km/s Mpc™!, we have a universe with an age of
approximately 25 billion years, easily enough to allow
for the estimated ages of the stars.

3. Compared to near-branch objects, far-branch objects
can have very large redshifts, appear significantly
smaller than their near-branch counterparts, and for
Z > 1, appear brighter. These anomalous properties are
characteristic of quasars. However, the number counts
predict roughly the same number of blueshifted far-
branch objects as high redshifted ones (3 < z < 4).
None has been observed: this apparent dearth of small,
bright, blueshifted objects requires explanation.

4. A quasar redshift “drop-off” near z = 3 was observed as
early as 1972,° and is currently a matter of some
debate.!”) Our model suggests that some quasars with
z ~ 3" may be near-branch objects whose infinity we
are approaching.

5. The model does not explain the cosmic microwave
background radiation. In FLRW models, the back
ground radiation is a remnant from the early “unex-
panded” universe. Here, our universe is not itself
expanding; objects within it just move away from each
other. From the geometry of the model (Fig. 5), we
receive no radiation from the early universe.

A very tentative candidate for the background radia-
tion is the cumulative result of those photons that
reach us after passing their emitter’s infinity. (A
similar situation occurs in Segal,”’ but the model is
completely different.)

A final comment: rather than contradicting general
relativity, a relative infinity complements it. Its effects
become significant only at cosmological distances: for nearby
world-lines with nearby antipodes, the effects are negligible,
and general relativistic effects due to matter curvature
predominate.

So, does matter matter? Certainly, when describing the
bending of light, black holes, the geometry of space-time
near a star, and the many other small-scale applications of
general relativity. But for cosmological redshifts, a relative
infinity may perhaps play a role as well.

APPENDIX: DERIVATION OF THE OBJECT'S WORLD-
LINE IN OUR COORDINATES

All matrices are 6 X 6, and are partitioned so that the
upper left corner is 3 x 3.
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Since T is the matrix of a cydic coordinate transformation
(which preserves the scalar product [, ]), it must satisfy
T'GT = G for

I, 0 0 0
0 -1 0 0
00 o0
0 0 -2 o

G=

Set

=

~ X m W
R~ a
X~

Then the relation T'GT = G gives ten identities:

1. 24'A-2B'E-0J"' - Jo" = 21,,
2. 2A'B-2FE-0K -JP =0,

3. 24'C-2GE-0L-JQ =0,

. 2A'D-2IE-0OM-JR=0,
B'B-F?-KP=-],
2B'C-2FG-PL-KQ=0,

. 2B'D-2FI-PM-KR =0,

. C'C-G*-QL=0,

. 2C'D-2GI-QM - LR = -1,
10.D'D-1*-MR=0.

© ® N WV oA

Since TB < B for B = (0, 0, 0, 0, 1, 0)', C, G, and Q vanish.
Identity 9 gives L = R™'. Then 3 and 6 show that 0 and P
vanish. Identities 4, 7, and 10 give T = CI for

I, 0o o )
0 1 0 I
©=l2r'pt -2r1 R R[D'D- 1]
0 o o0 R
and _
A B OO
_|E* F oo
=19 01 o
0 00 1

Identities 1, 2, and 5 now show that I'GI = G, i.e., I is the

matrix of a cydic coordinate transformation, and thus so is
cC=Tr"
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Figure 8. The number counts for near-branch objects and far-
branch objects with positive redshifts.

Matrix I gives a Lorentz transformation (in rectangular
ooordinates, its matrix is the upper left 4 X 4 corner of I). Up
to this Lorentz transformation, our cydic coordinate trans-
formation is then given by C, so in our cyclic coordinates, the
object’s world-line is effectively

R(r) < C(0,0,0,7,1,~12)",

or, in rectangular form,

-Dr?

()= R '
() -2Ir +1-[D'D - I*|r?

r-1Ir?
“2Ir +1-[D'D-I*)?’

(r)=R
The second synchronization relation

dt 1 ( ds
e = T /= 10rvVi=—-
dr |’=f=° - v dt |'- =

may be rewritten as

2
s ds (—‘#—) =-latt=r=0,
dr

which, upon direct calculation, simplifies to R? = 1. Since C
and -Crepresent the same cydlic coordinate transformation,
we may take R = 1. The third synchronization relation

d% _

— =0
2
df 'l’=l=0

then gives I = 0.
Finally, if we reorient our spatial axes so that our x-axis is
parallel to

d%
dt—,(o) =-2D,

then

1]|d%s
= (= t - =
D= (-6,0,0)" for 4: zl—-ldtzl
lk=r=0

and we have the world-line

as required.
Note that the final form of the matrix Cis

1 0000 -5
0 1000 O

0 0100 O
=19 0010 of
-26 0 0 01 ¢2

0 0000 1)

Received 21 February 1994.
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Résumé

Cet article analyse un modéle cosmologique basé sur une transformation mathématique simple de

I'espace de Minkowski plutit que sur les concepts de la relativité générale. Ce modeéle prédit l'existence

de deux classes distinctes d'objets cosmologiques :

* Une classe d'objets relativement proches, possédant des magnitudes apparentes, etc. Ces objets
sont semblables a ceux des modéles courants, mais leur décalage vers le rouge est limité a 3;

* Une seconde classe d'objets, plus distants, plus petits et plus brillants. Ces derniers possédent un
décalage illimité vers le rouge.

Le modéle suggére également que l'dge de I'univers est d'environ 25 milliards d'années soit, deux -fois

le temps de Hubble. Contrairement aux théories cosmologiques basées sur la relativité générale, le

présent modéle est indépendant de la distribution de la matiére dans l'univers et ses effets ne

deviennent importants qu‘a l'échelle cosmologique.

Endnotes

1

2
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For more on this topic, see J.A. Lester, J. Geom. 46
(1993), pp. 92-118

See, for example, J.L. Coolidge, A Treatise on the Circle and
the Sphere (Chelsea, New York, 1971; originally Oxford,
1916).

Some examples:

Fora2 X 2 orthogonal matrix A, the isometry r ~Ar has
matrix

-

1}
o O X
o = O
- O O

For a vector b € R?, the translation r - r + b has matrix

I, b o
T=/0 1 o
2b* (bb) 1

For a scalar 4 # 0, the dilatation (scale change) r - Ar
has matrix

I, 0 0
T=|0 A71! 0
0 0 21

These matrices all have eigenvector E. The inversion in
the unit dircle (r - (r, r) 'r) has matrix

- O O
o - O

which does not have eigenvector E; it interchanges B
and the origin (0, 0, 1, 0).

Cydlic coordinates in Minkowski space-time may also be
developed axiomatically. Assume that each observer’s
finite universe is a copy of Minkowski space-time, but
that the overlap between any two such universes need
only be a (mathematically) open subset. If two observers
always agree on whether or not a light signal can pass
between each pair of common events, then without
further assumptions, the transformation relating them
must be cydlic. For details, see A.D. Alexandrov, Vestnik
Leningrad Univ. Math. 11 (1976), pp. 95-100, or
J.A. Lester, Ann. Discrete Math. 18 (1983), pp. 567-574.
Another space-time model with a relative infinity can be
similarly developed using copies of de Sitter space-time:
see J.A. Lester, Astronomy and Astrophysics 207 (1993),
Pp. 231-248.

Further details of this and other conclusions may be
found in J.A. Lester, 11 Nuovo Cimento 72B (1982),
pp. 261-272, and II Nuovo Cimento 73B (1983),
pp. 139-149.

See for example the following papers in The Space Distri-
bution of Quasars, D. Crampton, ed., ASP Conference
Series 21 (1991): M. Schmidt, D. Schneider, J. Gunn,
pp- 109-114; M. Irwin, R. McMahon, C. Hazard,
pp.117-126; S.J. Warren, P.C. Hewett, P.S. Osmer,
pp. 139-148.
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