
Dynamic Geometry: New Math from Old?

June Lester
Centre for Experimental and Constructive Mathematics
Simon Fraser University, Canada
jalester@cecm.sfu.ca

Introduction. Dynamic geometry has its origins in the recent evolution of
computer geometry software packages such as Geometer's Sketch-
pad [1], Cabri II [2] and, more recently, Cinderella [3]. Originally devel-
oped to support the teaching of school level euclidean geometry (in the
role of “onscreen construction tools”), these packages have quickly be-
come an integral part of geometric pedagogy and, increasingly, of geo-
metric research.

As a topic of study, dynamic geometry (DG) concerns itself with the prop-
erties and behaviours of onscreen geometric objects which move or
change over time. In this note, we contend that, though initially modeled
on classical static euclidean geometry (SG), the mathematical nature of
DG is fundamentally different from that of SG. We then explore some of
the issues around trying to establish mathematical foundations for DG.

Caveat 1: The issue here is not the mathematical underpinnings of dy-
namic geometry software - the mathematical analysis and computer pro-
gramming constructs that produce the onscreen pictures. The intent is to
look at the feasibility of an intrinsic description of onscreen DG objects, in
terms of both their inherited euclidean properties and the novel proper-
ties created by motion. The ultimate goal (towards which this note is only
a very preliminary exploration) is to produce a formal description of DG in
the style of classical axiomatizations of SG. Such a formalization (if indeed
one can be found) could also be useful prescriptively to help resolve some
of the inconsistencies within and among computer geometry software
packages.

Caveat 2: What follows is by no means a precise exposition and is not
meant to be - a precise formulation of the issues involved would be half-
way to their resolution. Precision is part of the ultimate goal; here, there
are more questions than answers (and unfortunately, more confusion
than coherence). The issues tend to overlap or blur into each other, and
may turn out to be as much philosophical as mathematical. The intent
here is merely to identify some of the more salient ones.

How is dynamic geometry different? Onscreen geometrical objects (or
indeed onscreen objects of any type) lie somewhere in the middle of the
concrete-abstract continuum of objects in the universe. Though they
aren’t physically real, neither are they totally abstract: they possess a
visual form that can move, change or interact with external “users”. Fur-
thermore, the nature of the user interaction - direct manipulation with a
mouse - gives those users an almost tactile sense of interacting with
physical objects. Our perception of onscreen points, lines and circles,
etc. is thus fundamentally different from our perception of their more
static counterparts (dots on a page): instead of fixed sets of points em-
bedded in a plane, DG objects are perceived more as changeable objects
“floating” on top of a plane, which can be seized, moved, resized or re-
formed.

The basic mathematical consequence of this “perceptual physicality” is
that, unlike SG objects, a DG object can be moved or modified and still re-
tain its identity. In SG, points at different positions are always different
points; in DG, a point moved to a new position is still the same point - the
same onscreen object. In SG, the circle with centre (1,2) and radius 3 is
distinct from the one with centre (4,5) and radius 6. In DG, the circle with
centre (1,2) and radius 3 can have its centre dragged to position (4,5)
and its radius scaled to 6 and retain its identity - it remains the same cir-
cle. In DG, position, centre, radius, etc., instead of defining, labeling or
identifying an object as they do in SG, are now variable attributes of that
object.

But DG object behaviours are not completely physical either: unlike “real”
objects, two or more DG objects can occupy the same position and remain
separate objects. Dragging one point onto another at position (7,8) does
not produce a single point at (7,8), merely two distinct points with
(coincidentally) the same position, which can be separated at will. Dis-
tinct lines can coincide, as can distinct circles: in DG, coincidence is not
identity.

Thus, if mathematics is to model perception (as it does for SG), DG is fun-
damentally different from SG. These basic differences should be reflected
in any axiomatic formalization of DG.

What should a formalization of dynamic geometry do? To axiomatize
DG, we must first choose some objects (e.g. points, lines ...) as
"primitives" (basic objects not defined in terms of simpler component ob-
jects) and then define the fundamental relations among them; from these
all else is to be derived. For DG, this is more difficult than for SG: if the DG
mantra is to be “geometric truth is dynamically invariant”, then even no-
tions as basic as incidence are affected: a point does not become incident
with a line merely by occupying a position on it, but by being defined, con-
structed or proven to lie on all positions of the line. Dynamic invariance is
in fact not all that easy to pin down: the motion of a point whose only
constraint is that it lie on a given line, for example (e.g. via Sketchpad’s
“construct point on object “ menu choice) is not uniquely defined when
that line moves. Onscreen, the point has to go somewhere specific, but
exactly where is a programming choice, not a mathematical one: mathe-
matically, the point need only end up somewhere on the line.

Even our choice of primitive objects is affected by motion. It would be un-
productive to view a circle as a set of points, for example, since any
movement of the circle would then have to prescribe that of each individ-
ual point on it. So at the very least, we need points, lines and circles as
primitive objects. Then which points, lines and circles? All points or ob-
jects other than those explicitly defined, constructed or proven to exist
within the context of a given configuration are irrelevant dynamically,
since their movement with respect to the configuration is undefined and
undefinable. (It may help to think of these configurations as something
like linkages here - moveable configurations of objects.)

Rather than the SG infinite plane of points and objects formed from sub-
sets of points, the appropriate universe for DG may perhaps be more
usefully taken to be a collection of "templates" for primitive objects (e.g. a
generic "line" with line-like properties and behaviors) and rules for con-
structing dynamically invariant configurations from a finite (or countable)
number of instances of these types. There are programming constructs
for this sort of concept, but they lead in a more complicated direction than
this simple axiomatic first approach.

Assuming there is a coherent way of dealing with all of the above, how do
we check the consistency of the axioms? Traditionally in geometry, con-
sistency has been verified by reference to a concrete model of the ge-
ometry in terms of some other consistent system like the real numbers.
But if motion is involved, the most likely source of models appears to be
the physical world, and as we’ve seen, DG is not completely physical.
Some other method will have to be used.

Some other issues.

Parent-child relations. This is a significant DG issue that has only an in-
significant or non-existent SG counterpart. Parent-child relations describe
the sequence of defined or constructed objects in a configuration – the
line joining two points is a child of both parent points, for example. For
DG, this distinction is important: parental motion normally determines that
of the child but not vice versa (though some software implementations of
DG allow child-initiated movement, usually translation of the whole con-
figuration). So we would expect the visually identical constructions "two
lines, then their intersection point" and "a point on a line and then an-
other line through the point" to behave differently when the point is
dragged (the former possibly allowing translation of the two lines; the
latter moving only the second line). Any axiomatization of DG must cap-
ture such parent-child relations, and also account for any variances when
one or more of the ancestors is "pinned" (fixed).

Existence of intersections. This issue, the bane of DG software devel-
opers, doesn’t occur in SG: what becomes of object intersections when
the objects are pulled apart (i.e. to non-intersecting positions)? If two in-
tersecting DG circles are dragged apart, do their intersection points just
disappear? This is axiomatically and epistemologically unpalatable: if we
are treating points "physically" as objects instead of positions, then ei-
ther they exist or they don’t, irrespective of position. And then, if the cir-
cles are dragged together again, are the intersection points the same
ones as before? and if so, which is which? Computationally, different DG
software packages deal with such intersections in various and often in-
compatible ways, sometimes using relatively sophisticated mathematical
constructs such as continuity [3]. But such constructs are chosen more to
avoid visual "jumping" than to adhere to any elementary mathematical
principles, and even then, their application may be problematic.

For example, suppose a moving circle passes a stationary circle of equal
radius with its centre constrained to a (horizontal) line through the centre
of the stationary circle. What should happen to their points of intersec-
tion as the moving circle passes by the other? In Sketchpad, the upper
and lower intersection points exchange positions after the circles coincide
- a result that seems somewhat counterintuitive and undesirable: con-
tinuous motion should ideally produce continuous consequences. In Cin-
derella, the points don’t exchange positions, a more “natural” behaviour -
or is it? Suppose instead that the moving circle’s centre passes only very
near the centre of the fixed circle (so the circles never exactly coincide).
Simple experimentation (in either program) shows that the intersection
points then do a rapid flip around the stationary circle as the other
passes by. So if small perturbations in position should cause only small
changes in behaviour, perhaps the flipping behaviour is indeed more ap-
propriate? In fact, without a mathematical framework to judge by, either
behaviour is arguably better than the other.

Conclusion. There are other issues affecting a potential DG axiomatiza-
tion, probably many more than identified here. Transformations, for ex-
ample: if the motion of objects is already part of the formalization, what
role if any do rotations, translations and reflections play? If, like Hilbert,
we identify a geometry by its group of transformations, where does DG fit
in? And so on.

From the foregoing discussion, it seems likely that the most intractable
challenges to this type of formalization of DG will be coincidence and
existence/non-existence - the “non-physical” relations of DG. Coincidence
of objects allows all sorts of singular situations: even the basic “two
points determine a line” axiom of SG breaks down for coincident points in
DG. Triangles with coincident vertices are degenerate; circles with coinci-
dent centres have no radical axis, and so on. Parallelism causes similar
effects, as may any “borderline” relation. The problems caused by
existent/non-existent intersection points were described above; similar
problems occur with common tangents to pairs of circles, for example.
And to complicate matters, the two issues are interrelated: situations
where the coincidence of some objects can cause non-existence of others
are easy to find.

In light of these and other as yet unforeseen difficulties, then, it may well
be that a simple axiomatic formalization of DG is impossible, and that the
appropriate way to formalize DG is in terms of some other more compli-
cated mathematical system.

References

1. Geometer’s Sketchpad, Key Curriculum Press, Emeryville, California,
<http://www.keypress.com/catalog/products/software/Prod_GSP.html>

2. Cabri II, Institut d'Informatiqe et de Mathematiques Appliquees in
Université Joseph Fourier de Grenoble, France <http://www.cabri.net/>

3. The Interactive Geometry Software Cinderella, by Jürgen Richter
Gebert and Ulrich H. Kortenkamp. Springer, 1999
<http://www.cinderella.de>

